5000=2000(1+(3/100))^(n)

Simple and best practice solution for 5000=2000(1+(3/100))^(n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5000=2000(1+(3/100))^(n) equation:



5000=2000(1+(3/100))^(n)
We move all terms to the left:
5000-(2000(1+(3/100))^(n))=0
Domain of the equation: 100))^n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
-(2000(1+(+3/100))^n)+5000=0
We multiply all the terms by the denominator
-(2000(1+(+3+5000*100))^n)=0
We calculate terms in parentheses: -(2000(1+(+3+5000*100))^n), so:
2000(1+(+3+5000*100))^n
We add all the numbers together, and all the variables
2000(1+500003)^n
We add all the numbers together, and all the variables
2000500004^n
Back to the equation:
-(2000500004^n)
n=0/1
n=0
Równanie nie ma rozwiązania

See similar equations:

| 2.5=(1+(3100))^(n) | | 9e+7=189 | | 4x+4=4-4x | | 2/3x-7/1=-5 | | 1/5x-7=3/4+2x-25-3/4 | | 10x-10+x=3x+46 | | 5c+12=42 | | 7.2/2.4=x/1.6) | | -4.4+9.8=x | | 12c=c/4-8 | | 36x-18=72 | | 5e-1=34 | | 5(5q+9)+5q=24 | | 3(5x+6)-7x=25 | | 8=6(5x-7) | | 9(2p-1)=8 | | 10=8y+3 | | x+32/6=5 | | 2x=18=x+40 | | -48+x/4=-7 | | 10x+4=7x+37 | | 14.75n-50.625=1 | | -4+4w=20 | | 43b-28=144 | | 5+2/3x=1/4+10 | | 171=234-w | | 3e-3=33 | | 2=-8+u/5 | | -u+36=190 | | 88-y=227 | | 30=v/5-11 | | -6=v/3+4 |

Equations solver categories